

Developer’s Guide
PacketFence v14.1.0

Version 14.1.0 - February 2025

Table of Contents

1. About this Guide . 2
1.1. Other sources of information . 2

2. Creating a new Switch via a Template . 3
2.1. Using web admin . 3
2.2. Using CLI. 3
2.3. Required Parameters . 3
2.4. RADIUS scope Parameters . 3
2.5. Additional parameters . 4
2.6. Comments . 4
2.7. Defining RADIUS Attributes . 4
2.8. Dynamic RADIUS Attribute Value Syntax . 4

3. Documentation . 15
4. Asciidoctor documentation . 16

4.1. Documentation Conventions . 16
4.2. Checklist to create a new guide . 21

5. Development environment setup . 22
6. Administration GUI development setup . 23
7. Golang environment . 24

7.1. PacketFence Golang libraries . 24
8. Code conventions . 28

8.1. Code style. 28
9. HTTP JSON API . 30

9.1. How to use the API . 30
10. Customizing PacketFence . 32

10.1. Captive Portal . 32
10.2. Adding custom fields to the database . 34
10.3. VLAN assignment . 34

11. SNMP. 36
11.1. Introduction . 36
11.2. Obtaining switch and port information . 36

12. Supporting new network hardware. 37
12.1. Switch . 37
12.2. Wireless Access-Points or Controllers . 40
12.3. The "adding a new network device module in PacketFence" checklist 42

13. PacketFence builds . 43
13.1. Packer . 43
13.2. Anatomy of Packer template . 43
13.3. How to build container images ? . 43
13.4. Troubleshooting . 44

14. Developer recipes. 45
14.1. Virtual environment. 45
14.2. Running development version . 46

15. Containers recipes . 48
15.1. Glossary . 48
15.2. Applying a custom patch on a server running the packages . 48
15.3. Altering the code in a container on a server running the packages 48

16. Running tests . 49
16.1. Unit tests . 49
16.2. Integration tests. 50

17. Contributing . 56
17.1. Creating patches . 56
17.2. Translations . 56

18. Additional Information . 58
19. Commercial Support and Contact Information . 59
20. GNU Free Documentation License. 60

Copyright © 2025 Inverse inc.

Permission is granted to copy, distribute and/or modify this document under the terms of the
GNU Free Documentation License, Version 1.2 or any later version published by the Free
Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled "GNU Free Documentation License".

The fonts used in this guide are licensed under the SIL Open Font License, Version 1.1. This
license is available with a FAQ at: http://scripts.sil.org/OFL

Copyright © Łukasz Dziedzic, http://www.latofonts.com/, with Reserved Font Name: "Lato".

Copyright © Raph Levien, http://levien.com/, with Reserved Font Name: "Inconsolata".

Copyright © Inverse inc. Preface 1

http://scripts.sil.org/OFL
http://www.latofonts.com/
http://levien.com/

1. About this Guide

This guide will help modify PacketFence to your specific needs and contains information on how
to add support for new switches.

The latest version of this guide is available at https://packetfence.org/documentation/.

1.1. Other sources of information

Clustering Guide

Covers installation in a clustered environment.

Installation Guide

Covers installation and configuration of PacketFence.

Network Devices Configuration Guide

Covers switches, WiFi controllers and access points configuration.

Upgrade Guide

Covers compatibility related changes, manual instructions and general notes about upgrading.

PacketFence News

Covers noteworthy features, improvements and bug fixes by release.

These files are included in the package and release tarballs.

Copyright © Inverse inc. 1. About this Guide 2

https://packetfence.org/documentation/
PacketFence_Clustering_Guide.pdf
PacketFence_Installation_Guide.pdf
PacketFence_Network_Devices_Configuration_Guide.pdf
PacketFence_Upgrade_Guide.pdf
https://packetfence.org/news.html

2. Creating a new Switch via a Template

2.1. Using web admin

You can directly create or edit switch templates in Configuration → Integration → Switch
Templates menu.

2.2. Using CLI

To create a new Switch Template you must create a template file in the
/usr/local/pf/lib/pf/Switch directory. The file must have the following pattern
/usr/local/pf/lib/pf/Switch/<Vendor>/<SwitchName>.def.

For example to create a template for the vendor Cyberdyne and switch Switchinator 800. The
file name is /usr/local/pf/lib/pf/Switch/Cyberdyne/Switchinator800.def The file name
must must only consist of alphanumeric characters and under scores and must begin with a letter.

Once you have completed your switch template, you will need to perform the following
commands so it can be used:

/usr/local/pf/addons/dev-helpers/bin/generator-template-switches-defaults.pl

/usr/local/pf/bin/pfcmd configreload hard

/usr/local/pf/bin/pfcmd service pf restart

The file consist of parameter names and their values. There is no sections but RADIUS scope
parameters act like this.

No scopes are inherited from a base switch template, you need to define each scope you want to
use.

You can find a full working example below. Other examples are available in
/usr/local/pf/lib/pf/Switch/ folder.

2.3. Required Parameters

• description - The description of the switch.

• radiusDisconnect - The RADIUS disconnect methods to use. Must be one of the following
values coa|disconnect|coaOrDisconnect .

2.4. RADIUS scope Parameters

• acceptVlan - Attributes for accept vlan scope

• acceptRole - Attributes for accept role scope.

Copyright © Inverse inc. 2. Creating a new Switch via a Template 3

• reject - Attributes for rejection scope.

• disconnect - Attributes for disconnect scope (required if radiusDisconnect is 'disconnect' or
'coaOrDisconnect')

• coa - Attributes for CoA scope (required if radiusDisconnect is 'coa' or 'coaOrDisconnect')

• voip - Attributes for VOIP scope (If VOIP is enabled)

• bounce - Attributes for bounce scope

2.5. Additional parameters

• snmpDisconnect - If SNMP protocol should be use to disconnect (values: enabled or
disabled)

2.6. Comments

The line of a comment must begin with a '#' For example:

This is a comment

2.7. Defining RADIUS Attributes

scopeName = <<EOT

Attribute-Name1 = value1

Attribute-Name2 = value2

EOT

2.8. Dynamic RADIUS Attribute Value Syntax

Some values depends on the context of the current request. So here is mini templating language
to format values.

• Text replacement: $name

• Embedded text replacement: start-${name}-end

• Functions: ${f1("",$var, f2())}

2.8.1. Available variables for RADIUS scope

• acceptRole - (Same as acceptVlan)

• reject - (Same as acceptVlan)

• acceptVlan

◦ autoreg

◦ connection_sub_type

◦ connection_type

Copyright © Inverse inc. 2. Creating a new Switch via a Template 4

◦ eap_type

◦ fingerbank_info.device_name

◦ fingerbank_info.device_fq

◦ fingerbank_info.device_hierarchy_names

◦ fingerbank_info.device_hierarchy_ids

◦ fingerbank_info.score

◦ fingerbank_info.version

◦ fingerbank_info.mobile

◦ ifDesc

◦ ifIndex

◦ isPhone

◦ last_accounting.acctsessionid

◦ last_accounting.username

◦ locationlog.connection_sub_type

◦ locationlog.connection_type

◦ locationlog.dot1x_username

◦ locationlog.end_time

◦ locationlog.ifDesc

◦ locationlog.mac

◦ locationlog.port

◦ locationlog.realm

◦ locationlog.role

◦ locationlog.session_id

◦ locationlog.ssid

◦ locationlog.start_time

◦ locationlog.stripped_user_name

◦ locationlog.switch

◦ locationlog.switch_ip

◦ locationlog.switch_ip_int

◦ locationlog.switch_mac

◦ locationlog.vlan

◦ locationlog.voip

◦ mac

◦ nas_port_id

◦ nas_port_type

◦ node_info.autoreg

◦ node_info.status

◦ node_info.bypass_vlan

Copyright © Inverse inc. 2. Creating a new Switch via a Template 5

◦ node_info.bandwidth_balance

◦ node_info.regdate

◦ node_info.bypass_role

◦ node_info.device_class

◦ node_info.device_type

◦ node_info.device_version

◦ node_info.device_score

◦ node_info.pid

◦ node_info.machine_account

◦ node_info.category

◦ node_info.mac

◦ node_info.last_arp

◦ node_info.last_dhcp

◦ node_info.user_agent

◦ node_info.computername

◦ node_info.dhcp_fingerprint

◦ node_info.detect_date

◦ node_info.voip

◦ node_info.notes

◦ node_info.time_balance

◦ node_info.sessionid

◦ node_info.dhcp_vendor

◦ profile._access_registration_when_registered

◦ profile._always_use_redirecturl

◦ profile._autoregister

◦ profile._block_interval

◦ profile._description

◦ profile._dot1x_recompute_role_from_portal

◦ profile._dot1x_unset_on_unmatch

◦ profile._dpsk

◦ profile._locale

◦ profile._login_attempt_limit

◦ profile._logo

◦ profile._name

◦ profile._network_logoff

◦ profile._network_logoff_popup

◦ profile._preregistration

◦ profile._redirecturl

Copyright © Inverse inc. 2. Creating a new Switch via a Template 6

◦ profile._reuse_dot1x_credentials

◦ profile._root_module

◦ profile._self_service

◦ profile._sms_pin_retry_limit

◦ profile._sms_request_limit

◦ profile._status

◦ profile._unreg_on_acct_stop

◦ profile._vlan_pool_technique

◦ radius_request.<Radius Attribute Name>

◦ realm

◦ session_id

◦ source_ip

◦ ssid

◦ stripped_user_name

◦ switch._ExternalPortalEnforcement

◦ switch._RoleMap

◦ switch._VpnMap

◦ switch._SNMPAuthPasswordRead

◦ switch._SNMPAuthPasswordTrap

◦ switch._SNMPAuthPasswordWrite

◦ switch._SNMPAuthProtocolRead

◦ switch._SNMPAuthProtocolTrap

◦ switch._SNMPAuthProtocolWrite

◦ switch._SNMPCommunityRead

◦ switch._SNMPCommunityTrap

◦ switch._SNMPCommunityWrite

◦ switch._SNMPEngineID

◦ switch._SNMPPrivPasswordRead

◦ switch._SNMPPrivPasswordTrap

◦ switch._SNMPPrivPasswordWrite

◦ switch._SNMPPrivProtocolRead

◦ switch._SNMPPrivProtocolTrap

◦ switch._SNMPPrivProtocolWrite

◦ switch._SNMPUserNameRead

◦ switch._SNMPUserNameTrap

◦ switch._SNMPUserNameWrite

◦ switch._SNMPVersion

◦ switch._SNMPVersionTrap

Copyright © Inverse inc. 2. Creating a new Switch via a Template 7

◦ switch._TenantId

◦ switch._UrlMap

◦ switch._VlanMap

◦ switch._VoIPEnabled

◦ switch._cliEnablePwd

◦ switch._cliPwd

◦ switch._cliTransport

◦ switch._cliUser

◦ switch._coaPort

◦ switch._controllerIp

◦ switch._deauthMethod

◦ switch._disconnectPort

◦ switch._id

◦ switch._inlineTrigger

◦ switch._ip

◦ switch._macSearchesMaxNb

◦ switch._macSearchesSleepInterval

◦ switch._mode

◦ switch._roles

◦ switch._switchIp

◦ switch._switchMac

◦ switch._uplink

◦ switch._useCoA

◦ switch._vlans

◦ switch._wsPwd

◦ switch._wsTransport

◦ switch._wsUser

◦ switch_ip

◦ switch_mac

◦ time

◦ user_name

◦ user_role

◦ vlan

◦ wasInline

• coa

◦ last_accounting.acctsessionid

◦ last_accounting.username

◦ mac

Copyright © Inverse inc. 2. Creating a new Switch via a Template 8

◦ locationlog.connection_sub_type

◦ locationlog.connection_type

◦ locationlog.dot1x_username

◦ locationlog.end_time

◦ locationlog.ifDesc

◦ locationlog.mac

◦ locationlog.port

◦ locationlog.realm

◦ locationlog.role

◦ locationlog.session_id

◦ locationlog.ssid

◦ locationlog.start_time

◦ locationlog.stripped_user_name

◦ locationlog.switch

◦ locationlog.switch_ip

◦ locationlog.switch_ip_int

◦ locationlog.switch_mac

◦ locationlog.vlan

◦ locationlog.voip

◦ role

◦ time

• disconnect

◦ disconnectIp

◦ last_accounting.acctsessionid

◦ last_accounting.username

◦ locationlog.connection_sub_type

◦ locationlog.connection_type

◦ locationlog.dot1x_username

◦ locationlog.end_time

◦ locationlog.ifDesc

◦ locationlog.mac

◦ locationlog.port

◦ locationlog.realm

◦ locationlog.role

◦ locationlog.session_id

◦ locationlog.ssid

◦ locationlog.start_time

◦ locationlog.stripped_user_name

Copyright © Inverse inc. 2. Creating a new Switch via a Template 9

◦ locationlog.switch

◦ locationlog.switch_ip

◦ locationlog.switch_ip_int

◦ locationlog.switch_mac

◦ locationlog.vlan

◦ locationlog.voip

◦ mac

◦ time

• voip

◦ switch._ExternalPortalEnforcement

◦ switch._RoleMap

◦ switch._VpnMap

◦ switch._SNMPAuthPasswordRead

◦ switch._SNMPAuthPasswordTrap

◦ switch._SNMPAuthPasswordWrite

◦ switch._SNMPAuthProtocolRead

◦ switch._SNMPAuthProtocolTrap

◦ switch._SNMPAuthProtocolWrite

◦ switch._SNMPCommunityRead

◦ switch._SNMPCommunityTrap

◦ switch._SNMPCommunityWrite

◦ switch._SNMPEngineID

◦ switch._SNMPPrivPasswordRead

◦ switch._SNMPPrivPasswordTrap

◦ switch._SNMPPrivPasswordWrite

◦ switch._SNMPPrivProtocolRead

◦ switch._SNMPPrivProtocolTrap

◦ switch._SNMPPrivProtocolWrite

◦ switch._SNMPUserNameRead

◦ switch._SNMPUserNameTrap

◦ switch._SNMPUserNameWrite

◦ switch._SNMPVersion

◦ switch._SNMPVersionTrap

◦ switch._TenantId

◦ switch._UrlMap

◦ switch._VlanMap

◦ switch._VoIPEnabled

◦ switch._cliEnablePwd

Copyright © Inverse inc. 2. Creating a new Switch via a Template 10

◦ switch._cliPwd

◦ switch._cliTransport

◦ switch._cliUser

◦ switch._coaPort

◦ switch._controllerIp

◦ switch._deauthMethod

◦ switch._disconnectPort

◦ switch._id

◦ switch._inlineTrigger

◦ switch._ip

◦ switch._macSearchesMaxNb

◦ switch._macSearchesSleepInterval

◦ switch._mode

◦ switch._roles

◦ switch._switchIp

◦ switch._switchMac

◦ switch._uplink

◦ switch._useCoA

◦ switch._vlans

◦ switch._wsPwd

◦ switch._wsTransport

◦ switch._wsUser

◦ time

◦ vlan

• bounce

◦ disconnectIp

◦ ifIndex

◦ last_accounting.acctsessionid

◦ last_accounting.username

◦ locationlog.connection_sub_type

◦ locationlog.connection_type

◦ locationlog.dot1x_username

◦ locationlog.end_time

◦ locationlog.ifDesc

◦ locationlog.mac

◦ locationlog.port

◦ locationlog.realm

◦ locationlog.role

Copyright © Inverse inc. 2. Creating a new Switch via a Template 11

◦ locationlog.session_id

◦ locationlog.ssid

◦ locationlog.start_time

◦ locationlog.stripped_user_name

◦ locationlog.switch

◦ locationlog.switch_ip

◦ locationlog.switch_ip_int

◦ locationlog.switch_mac

◦ locationlog.vlan

◦ locationlog.voip

◦ mac

◦ switch._cliEnablePwd

◦ switch._cliPwd

◦ switch._cliTransport

◦ switch._cliUser

◦ switch._coaPort

◦ switch._controllerIp

◦ switch._deauthMethod

◦ switch._disconnectPort

◦ switch._ExternalPortalEnforcement

◦ switch._id

◦ switch._inlineTrigger

◦ switch._ip

◦ switch._macSearchesMaxNb

◦ switch._macSearchesSleepInterval

◦ switch._mode

◦ switch._RoleMap

◦ switch._VpnMap

◦ switch._roles

◦ switch._SNMPAuthPasswordRead

◦ switch._SNMPAuthPasswordTrap

◦ switch._SNMPAuthPasswordWrite

◦ switch._SNMPAuthProtocolRead

◦ switch._SNMPAuthProtocolTrap

◦ switch._SNMPAuthProtocolWrite

◦ switch._SNMPCommunityRead

◦ switch._SNMPCommunityTrap

◦ switch._SNMPCommunityWrite

Copyright © Inverse inc. 2. Creating a new Switch via a Template 12

◦ switch._SNMPEngineID

◦ switch._SNMPPrivPasswordRead

◦ switch._SNMPPrivPasswordTrap

◦ switch._SNMPPrivPasswordWrite

◦ switch._SNMPPrivProtocolRead

◦ switch._SNMPPrivProtocolTrap

◦ switch._SNMPPrivProtocolWrite

◦ switch._SNMPUserNameRead

◦ switch._SNMPUserNameTrap

◦ switch._SNMPUserNameWrite

◦ switch._SNMPVersion

◦ switch._SNMPVersionTrap

◦ switch._switchIp

◦ switch._switchMac

◦ switch._TenantId

◦ switch._uplink

◦ switch._UrlMap

◦ switch._useCoA

◦ switch._VlanMap

◦ switch._vlans

◦ switch._VoIPEnabled

◦ switch._wsPwd

◦ switch._wsTransport

◦ switch._wsUser

◦ time

2.8.2. Available functions

• macToEUI48($mac) - format a mac to AA-BB-CC-DD-FF-EE format

• uc($string) - uppercases a string

• lc($string) - lowercases a string

• log($string) - log a message to the log

• substr($str, $offset, $len) - Extracts a substring from a string

• split($sep, $str) - Split a string by a seperator.

• join($sep, $a, $b, ..) - Join a list of string with a seperator.

• replace($str, $old, $new) - Replace the old string with a new string.

2.8.3. Full Working Example

Copyright © Inverse inc. 2. Creating a new Switch via a Template 13

description = The Switchinator 800

radiusDisconnect = disconnect

acceptVlan = <<EOT

Tunnel-Medium-Type = 6

Tunnel-Type = 13

Tunnel-Private-Group-Id = $vlan

EOT

acceptRole = <<EOT

Filter-Id = $role

EOT

reject = <<EOT

Reply-Message = Hasta la vista, baby.

EOT

disconnect = <<EOT

Calling-Station-Id= ${macToEUI48($mac)}

NAS-IP-Address = $disconnectIp

EOT

coa = <<EOT

Calling-Station-Id= ${macToEUI48($mac)}

NAS-IP-Address = $disconnectIp

Filter-Id = $role

EOT

bounce= <<EOT

Cisco-AVPair = subscriber:command=bounce-host-port

Acct-Session-Id = $last_accounting.acctsessionid

EOT

Copyright © Inverse inc. 2. Creating a new Switch via a Template 14

3. Documentation

The in-depth or more technical documentation is always as close to the code as possible. Always
look at the POD doc [1]. To do so, the preferred way is using the perldoc command as follows:

perldoc lib/pfconfig/cached.pm

[1] Perl’s Plain Old Documentation: http://perldoc.perl.org/perlpod.html

Copyright © Inverse inc. 3. Documentation 15

http://perldoc.perl.org/perlpod.html

4. Asciidoctor documentation

4.1. Documentation Conventions

4.1.1. Shell commands in code blocks

To ease copy-paste of shell commands:

• Remove useless characters in code blocks like # or $

• Split long lines with \

4.1.2. Titles

We use Asciidoctor tags for section titles (headings) in place of AsciiDoc tags, see table below for
equivalence:

Table 1. Compatibility between AsciiDoc and Asciidoctor syntax for section titles

Level AsciiDoc syntax (old) Asciidoctor syntax (new)

Level 0 (Document title) ===== =

Level 1 ----- ==

Level 2 ~~~ ===

Level 3 ^^^ ====

Level 4 + =====

4.1.3. Other Conventions

* (asterisk) for important vocabulary. Ex: *This Part* is important

_ (underscore) for menus. Ex: _Configuration → Policies and Access Control → Connection Profile
→ Profile Name_

backquotes ` for buttons. Ex: Click on `Save`

4.1.4. Inter-document cross references

We use inter-document cross references feature to make links between all PacketFence guides.
When we need to link to a specific section of a document, we use automatic anchors feature to
have a correct display in PDF.

4.1.5. List of Asciidoctor tags used

Source: AsciiDoc Mark-up Quick Reference for Red Hat Documentation

Copyright © Inverse inc. 4. Asciidoctor documentation 16

https://asciidoctor.org/docs/user-manual/#inter-document-cross-references
https://asciidoctor.org/docs/user-manual/#automatic-anchors
https://redhat-documentation.github.io/asciidoc-markup-conventions/

NOTE
Some markup examples used in this overview are based on new Asciidoctor
features and they are not a part of the standard set of elements. Please, use the
:experimental: tag in the header of your document to enable this functionality.

Element Mark-up Example rendered output

Application name No special markup The foo application.

Code blocks
[source,golang]

package main

import "fmt"

func main() {

 fmt.Println("Hello

World !")

}

package main

import "fmt"

func main() {

 fmt.Println("Hello

World !")

}

Code - inline
`print("Hello, World!")`

print("Hello, World!")

Command block

$ echo "Hello, World!" >

hello.txt

$ echo "Hello, World!" >

hello.txt

Command - inline
Use the [command]`oc get`

command to get a list of

services.

Use the oc get command to get a
list of services.

Emphasis for a term
Use _this_ approach.

Use this approach.

Copyright © Inverse inc. 4. Asciidoctor documentation 17

Element Mark-up Example rendered output

Filenames or directory
paths Edit the

[filename]`pf.conf` file

as required and save your

changes.

The

[filename]`networks.conf`

configuration file is

located in the

[filename]`/usr/local/pf/

` directory.

Edit the pf.conf file as required
and save your changes.

The networks.conf configuration
file is located in the
/usr/local/pf/ directory.

Element Mark-up Example rendered output

GUI Text
The web browser displays

404 for an unreachable

URL.

The web browser displays 404 for
an unreachable URL.

GUI Button
(experimental feature,
Asciidoctor only)

Click btn:[Save As] to

save the file under a

different name.

Click btn:[Save As] to save the file
under a different name.

GUI Menu (experimental
feature, Asciidoctor only) Navigate to

menu:File[Import>Import

csv] to import a csv

file.

Navigate to
menu:File[Import>Import csv] to
import a csv file.

GUI button and menu
(non-experimental) Navigate to

_Configuration ->

Policies and Access

Control_

Navigate to Configuration →
Policies and Access Control

Element Mark-up Example rendered output

Inline Image
image::pf-

logo.png[width=25px]

Copyright © Inverse inc. 4. Asciidoctor documentation 18

Element Mark-up Example rendered output

Block Image
.PacketFence

image::pf-

logo.png[width=25px] Figure 1. PacketFence

Inline operations and
user input The `GET` operation can

be used to do something.

Answer by typing `Yes` or

`No` when prompted.

The GET operation can be used to
do something.

Answer by typing Yes or No when
prompted.

Element Mark-up Example rendered output

Keyboard shortcuts
(experimental feature,
Asciidoctor only)

kbd:[Ctrl+Alt+Del]
kbd:[Ctrl+Alt+Del]

Element Mark-up Example rendered output

Link (external)
link:http://www.packetfen

ce.org[PacketFence]

PacketFence

Copyright © Inverse inc. 4. Asciidoctor documentation 19

http://www.packetfence.org

Element Mark-up Example rendered output

Lists

NOTE
Do not
put steps
in bold.

.Ordered list

. First item

. Second item

. Third item

.Unordered list

* This

* That

* The other

.Definition or labeled

list

Term A:: description

Term B:: description

.Checklist

* [] first step

** [] first task

** [] second task

* [] second step

* [] third step

Ordered list

1. First item

2. Second item

3. Third item

Unordered list

• This

• That

• The other

Definition or labeled list

Term A

description

Term B

description

Checklist

☐ first step

☐ first task

☐ second task

☐ second step

☐ third step

Literal value …. The function returns true. …. The function returns true.

Element Mark-up Example rendered output

Package
Install the

[package]`packetfence`

package.

Install the packetfence package.

Product name No special markup. Use {nbsp} in
the company and product names.
Example: Inverse{nbsp}Inc.

Inverse Inc.

Reference to
PacketFence guides See the PacketFence

link:guide-

url[_Installation Guide_]

for more information.

See the PacketFence Installation
Guide for more information.

Copyright © Inverse inc. 4. Asciidoctor documentation 20

guide-url
guide-url

Element Mark-up Example rendered output

System or software
variable to be replaced
by the user

Use the following command

to roll back a

deployment, specifying

the deployment name: `oc

rollback _deployment_`.

Use the following command to
roll back a deployment, specifying
the deployment name: oc
rollback deployment.

System or software
configuration parameter
or environment variable

Use the `_IP_ADDRESS_`

environment variable for

the server IP address.

Use the IP_ADDRESS environment
variable for the server IP address.

System item, daemon, or
service Include the `pf::Switch`

library.

Stop the `pfqueue`

daemon.

Start the `iptables`

service.

Include the pf::Switch library.

Stop the pfqueue daemon.

Start the packetfence-iptables
service.

4.2. Checklist to create a new guide

☐ create PacketFence_GUIDENAME.asciidoc based on PacketFence Template Guide

☐ update all target in Makefile

☐ update packaging (if necessary)

☐ update website listing to add a new guide

Copyright © Inverse inc. 4. Asciidoctor documentation 21

PacketFence_Template_Guide.asciidoc

5. Development environment setup

This section will guide you through the setup of your development environment and once done,
you will have an environment running the sources in /usr/local/pf.

First, you will need to deploy an RHEL 8 or Rocky 8 machine. No other operating systems are
currently supported for a development environment.

NOTE
If you’re running on Linode, disable Network helper: https://www.linode.com/
docs/guides/network-helper/

Now, you need to figure out what is the current devel version number, you can obtain it from
here: https://github.com/inverse-inc/packetfence/blob/devel/conf/pf-release

IMPORTANT This example will use version 99.9 as the example version number.

Next, install PacketFence from the RPM repository:

yum localinstall

http://packetfence.org/downloads/PacketFence/RHEL8/packetfence-release-

99.9.el8.noarch.rpm -y

yum install kernel-devel-$(uname -r) -y

yum install packetfence --enablerepo=packetfence --allowerasing

git config --global --add safe.directory /usr/local/pf

Now, you must go through the configurator and validate you can login into the admin interface at
the end.

Next, run:

dnf module install nodejs:20

bash /usr/local/pf/addons/dev-helpers/setup-dev-env.sh

You will now have to wait for 10-15 minutes after the startup so that all container images are
built (they’re built on runtime when using a dev environment)

Copyright © Inverse inc. 5. Development environment setup 22

https://www.linode.com/docs/guides/network-helper/
https://www.linode.com/docs/guides/network-helper/
https://github.com/inverse-inc/packetfence/blob/devel/conf/pf-release

6. Administration GUI development setup

To start an webpack-dev-server instance for PacketFence admin GUI, follow these steps:

1. Point webpack-dev-server to an already running PacketFence API by setting an
VUE_APP_API_SOCKET_ADDRESS environment variable. For example, export
VUE_APP_API_SOCKET_ADDRESS=localhost:1443

2. Run cd ./html/pfappserver/root

3. Run npm run serve

You should now have a running instance webpack-dev-server on port 8081.

Copyright © Inverse inc. 6. Administration GUI development setup 23

7. Golang environment

7.1. PacketFence Golang libraries

7.1.1. Basic setup

This is a guide on how to setup/use the PacketFence Golang libraries.

In order to bootstrap your environment:

cd /usr/local/pf/go

make go-env

If you work directly on sources, you can run:

cd go

GO_REPO=${PWD} make go-env

This will install Golang version use to build PacketFence Golang binaries and check if all modules
defined in go.mod are available.

You should then source your .bashrc to get the new environment variables:

source ~/.bashrc

You can get a complete overview of your Golang environment with go env command.

7.1.2. Pulling the dependencies

Dependencies use go modules and will be fetched automatically during build time.

You will also need ipset-devel and pkgconfig libraries which can be installed using the following
command:

RHEL-based systems

yum install ipset-devel pkgconfig

Debian-based systems

apt install libipset-dev pkg-config

Copyright © Inverse inc. 7. Golang environment 24

7.1.3. Update dependencies

After you add or remove Golang dependencies, you should run following command in go
directory to update go.mod and go.sum files:

go mod tidy

7.1.4. Building the code

All code should be built into a Caddy middleware which we’ll then use in a Caddyfile to create
our recipes. Only reason for not using Caddy would be that the binaries doesn’t interact using
HTTP (which Caddy can handle at some point). For now, we’ll focus only on services using HTTP
until we’re confortable with Caddy.

A local version of Caddy is in caddy/caddy. This is a vendored version of Caddy which includes
the plugins and middlewares for PacketFence.

In order to build the Caddy HTTP service (pfhttpd):

make pfhttpd

Do the same to build pfdns, pfdhcp, pfdetect and pfstats:

make all

make copy

7.1.5. Creating a service

Once you’ve built pfhttpd, you can use a Caddyfile to load your middleware and bind it on a
specific port:

localhost:1234 {

 logger {

 requesthistory 100

 level DEBUG

 }

 statsd {

 proto udp

 prefix pfsso

 }

 pfsso

}

This file should be put in /usr/local/pf/conf/caddy-services/pfexample.conf

Note how you can control the logger configuration from the Caddyfile. If your middleware (in

Copyright © Inverse inc. 7. Golang environment 25

this example pfsso) uses or calls the logger, you must declare it in your Caddyfile.

If your middleware uses statsd, you don’t have to configure statsd in your Caddyfile which will
result in the packets just not being sent (a dummy statsd client will be created).

You can start pfhttpd with your Caddyfile using the following command:

/usr/local/pf/sbin/pfhttpd -conf /usr/local/pf/conf/caddy-

services/pfexample.conf

Once you have ascertained that the service is working correctly, you need to create an instance
of pf::services::manager for it. You will also need to create a unitfile for it in conf/systemd like
the following:

[Unit]

Description=PacketFence Example Service

Wants=packetfence-base.target packetfence-config.service packetfence-

iptables.service

After=packetfence-base.target packetfence-config.service packetfence-

iptables.service

Before=packetfence-pfexample.service

[Service]

PIDFile=/usr/local/pf/var/run/pfexample.pid

ExecStart=/usr/local/pf/sbin/pfhttpd -conf /usr/local/pf/conf/caddy-

services/pfexample.conf

Restart=on-failure

Slice=packetfence.slice

[Install]

WantedBy=packetfence.target

Make sure that the packaging is also updated to copy those files in the
/usr/lib/systemd/system directory.

7.1.6. Running the tests

Like the perl unit tests, the Golang tests rely on the presence of the test pfconfig process to
execute properly.

In order to start the test pfconfig process:

cd /usr/local/pf/t && ./pfconfig-test

You can proceed to execute all or some of the Golang unit tests:

cd /usr/local/pf/go

Copyright © Inverse inc. 7. Golang environment 26

go test ./...

cd /usr/local/pf/go/firewallsso/lib

go test

In order to run all the tests easily you can also do:

cd /usr/local/pf/go

make test

Copyright © Inverse inc. 7. Golang environment 27

8. Code conventions

8.1. Code style

CAUTION Work in progress.

We are slowly migrating away from an automated perltidy code style. The reason we are not
doing another pass of tidy is that it messes up code history and makes maintainer’s job more
complicated than it should be. Every new change uses the new guidelines so over time the old
code style will slowly disappear.

• Lines of 120 character width maximum

• No tab characters

• Stay consistent with surrounding white spaces

• Document each subroutine in POD format (perldoc perlpod)

• Use constants instead of hard coded strings or numbers (use constant or Readonly modules)

• in object-oriented modules we use CamelCase [1] notation (ex:
$radiusRequest→getVoIpAttributes();)

• in procedural modules we use Perl’s usual notation (ex: $node_info{'pid'} =
$current_request{'pid'};)

• regular expressions should be documented (with the /x modifier)

if ($phone_number =~ /

 ^\(?([2-9]\d{2})\)? # captures first 3 digits allows parens

 (?:-|.|\s)? # separator -, ., space or nothing

 (\d{3}) # captures 3 digits

 (?:-|.|\s)? # separator -, ., space or nothing

 (\d{4})$ # captures last 4 digits

 /x) {

 return "$1$2$3";

}

• SQL should be capitalized, properly indented and always use named fields (no *)

$node_statements->{'node_add_sql'} = get_db_handle()->prepare(<<'SQL');

 INSERT INTO node (

 mac, pid, category_id, status, voip, bypass_vlan,

 detect_date, regdate, unregdate,

 user_agent, computername, dhcp_fingerprint,

 last_arp, last_dhcp,

 notes

Copyright © Inverse inc. 8. Code conventions 28

) VALUES (

 ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?, ?

)

SQL

[1] http://en.wikipedia.org/wiki/CamelCase

Copyright © Inverse inc. 8. Code conventions 29

http://en.wikipedia.org/wiki/CamelCase

9. HTTP JSON API

PacketFence provides an HTTP JSON API which exposes most of its functionality.

The full API specification for:

• the latest stable release is available from: https://packetfence.org/doc/api/

• the latest devel release is available from: https://packetfence.org/doc/api-devel/

The API is exposed on 127.0.0.1 (localhost) as well as the management interface of the server for
remote calls. Users access the API on TCP port 9999 over a secure connection (HTTPS).

Authentication can be done using either the webservices credentials or any credentials that are
valid on the web admin interface.

9.1. How to use the API

9.1.1. On a PacketFence server

The pfperl-api command located in /usr/local/pf/sbin/ directory can be use directly from a
PacketFence server to query the API without having to specify an authentication token and extra-
parameters.

Example to get your general configuration:

/usr/local/pf/sbin/pfperl-api get /api/v1/config/base/general \

| python -m json.tool

Example to create a node:

/usr/local/pf/sbin/pfperl-api get -M POST /api/v1/nodes/ \

-c '{"mac":"22:33:44:55:66:77","pid":"default"}' \

| python -m json.tool

Example to create a node with JSON payload in a dedicated file:

example.json

{"mac":"22:33:44:55:66:77","pid":"default"}

cat example.json | \

/usr/local/pf/sbin/pfperl-api get -M POST /api/v1/nodes/ \

Copyright © Inverse inc. 9. HTTP JSON API 30

https://packetfence.org/doc/api/
https://packetfence.org/doc/api-devel/

| python -m json.tool

9.1.2. On a different computer

NOTE
The API specification mentionned above provides ready-to-use curl commands
through the "Try it out" button.

First, get an authentication token with the webservices credentials or an admin account:

curl -X POST "https://PF_MANAGEMENT_IP:9999/api/v1/login" \

-H "accept: application/json" \

-H "Content-Type: application/json" \

-d "{\"username\":\"admin\",\"password\":\"admin\"}" \

--insecure |

python -m json.tool

You will get following response :

 {

 "token": "MY_TOKEN"

 }

Then use this token to query the API. The following example fetches the general configuration:

curl -X GET "https://PF_MANAGEMENT_IP:9999/api/v1/config/base/general" \

-H "accept: application/json" \

-H "Authorization: MY_TOKEN" \

--insecure |

python -m json.tool

Although the API should mostly stay the same, backward compatibility is not 100% guaranteed
for the moment until the v1 API reaches full maturity.

Copyright © Inverse inc. 9. HTTP JSON API 31

10. Customizing PacketFence

10.1. Captive Portal

10.1.1. Presentation

XHTML Templates

Captive portal content use Template Toolkit templates. The default template files are located in
/usr/local/pf/html/captive-portal/templates. You can freely edit the HTML code in these
files.

Each template relies on layout.html for the common top and bottom portions of the page.

Internationalized AUP

In the event that you need an Acceptable Usage Policy that should be translated in different
languages in the captive portal, you can create specially named templates that will be used for
different languages.

For example, if the browser locale is es_ES, creating a template named aup_text.es.html will
display this AUP when it detects this locale. Same goes for a browser with locale en_US, where
creating a template named aup_text.en.html will be used for English browsers.

The template aup_text.html is used as the final fallback for all locales.

Note that you cannot use the full locale in the template name (i.e. aup_text.en_US.html) as only
the two letter prefix should be used.

Logo

In order to customize the default logo that is shown on the captive portal, go in
Configuration→Policies And Access Control→Connection Profiles→default→Files. Next, upload your
logo at the root of the files. Once it has been uploaded, go in the Captive Portal section of the
connection profile and change the 'Logo' field value to /profile-templates/default/filename-
of-your-logo.png.

Alternatively, you could also delete the existing logo.png in the files, then upload your logo and
rename it to logo.png. Doing so will not require to alter the value of 'Logo' in the connection
profile.

You can also have a different logo per connection profile. In order to do so, upload your logo in
the appropriate connection profile, then edit it’s 'Logo' value to be /profile-
templates/CONNECTION_PROFILE_ID/filename-of-your-logo.png.

For the best results, your logo size should be approximately 330x75 pixels.

Copyright © Inverse inc. 10. Customizing PacketFence 32

http://template-toolkit.org/

CSS

The easiest way to customize CSS is to override default CSS using a <style> tag inside
layout.html.

<style> tag must be inserted just before <\head> in layout.html.

You also need to disable Content-Security-Policy (CSP) headers on captive portal (see
instructions).

Workflow

When a HTTP request is received by the Apache web server, the following workflow happens:

1. URL is compared against the redirection instructions in
/usr/local/pf/conf/httpd.conf.d/captive-portal-cleanurls.conf

2. Requested CGI script in /usr/local/pf/html/captive-portal/ is executed

3. CGI script calls a generate_<type> which is defined in /usr/local/pf/lib/pf/web.pm

4. The generate_<type> function populate the proper template in
/usr/local/pf/html/captive-portal/templates in order to render the page

Remediation Pages

The remediation page shown to the user during isolation are specified through the URL
parameter of the given security event in /usr/local/pf/conf/security_events.conf. In its
default configuration, PacketFence uses Template Toolkit to render text provided in the directory
/usr/local/pf/html/captive-portal/templates/security_events and obeys to everything
mentioned in the Presentation section.

Translations

The language of the user registration pages is selected through the general.locale configuration
parameter. Translatable strings are handled differently for the Remediation pages and the rest of
the captive portal:

• Remediation pages

Strings defined in the security event pages (in /usr/local/pf/html/captive-
portal/templates/security_events) will be looked up in the translation files in
/usr/local/pf/conf/locale/.. and if a translation is available the translated string will be
the one visible on the captive portal.

Also, if you create a security event template with the name of your locale in
/usr/local/pf/html/captive-portal/templates/security_events in the format:
<template_name>.<locale_name>.html. It will be loaded instead of the default
<template_name>.html and so you can put strings and HTML directly in your target language
without the hassle of escaping everything properly as you would need to do with gettext.

For example, if malware.es_ES.html exists and you are using the es_ES (Spanish) locale then it
will be loaded instead of malware.html on a security event set to load the malware template.

• Rest of the captive portal

In the templates, if a string is in a i18n() call it will be translated. Also pf::web takes care of

Copyright © Inverse inc. 10. Customizing PacketFence 33

PacketFence_Installation_Guide.pdf#_content_security_policy_csp

performing some of the other translations.

10.2. Adding custom fields to the database

You can, if needed, add additional fields to the PacketFence database. Keep in mind though that
this might lead to more work when you upgrade to the next PacketFence version. Depending on
the degree of integration of these fields with PacketFence, you’ll have to execute one or more of
the following steps

10.2.1. Adding a field to the database only

In this case, the field is part of one of the main PacketFence tables, but PacketFence is unaware
of it. PacketFence won’t consult the field and won’t be able to modify it. A possible usage
scenario would be a 3rd party application which maintains this field.

Since PacketFence doesn’t have to know about the field, all you have to do is execute your SQL
ALTER TABLE query and you are done.

10.2.2. Adding a field and giving PacketFence read-only access

In this case, PacketFence can show the contents of the table using both pfcmd but won’t be able
to modify the contents of the field.

Start by modifying the database table using an SQL ALTER TABLE query.

Then, modify the Perl module having the same name as the table you have added the field to, i.e.
If you added the field to the node table, then edit /usr/local/pf/lib/pf/node.pm. You’ll have to
modify the SQL SELECT queries at the beginning of the file to include your new field and, possibly
the functions using these queries. If your new field should be used in reports, the dashboard or
graphs, you’ll also have to modify the queries in /usr/local/pf/lib/pf/pfcmd/graph.pm,
/usr/local/pf/lib/pf/pfcmd/report.pm and /usr/local/pf/lib/pf/pfcmd/dashboard.pm.

10.2.3. Adding a field and giving PacketFence read-write access

Start by creating the read-only field as described above.

Then, modify the SQL UPDATE and INSERT queries in the database tables' Perl module, as well as
the associated functions.

10.3. VLAN assignment

PacketFence uses the getRegisteredRole function defined in pf::role::custom to determine a
node’s VLAN. Here’s the default function:

sub getRegisteredRole {

 #$switch is the switch object (pf::Switch)

 #$ifIndex is the ifIndex of the computer connected to

 #$mac is the mac connected

 #$node_info is the node info hashref (result of pf::node's node_view on

$mac)

 #$conn_type is set to the connection type expressed as the constant in

Copyright © Inverse inc. 10. Customizing PacketFence 34

pf::config

 #$user_name is set to the RADIUS User-Name attribute (802.1X Username or

MAC address under MAC Authentication)

 #$ssid is the name of the SSID (Be careful: will be empty string if radius

non-wireless and undef if not radius)

 my ($self, $switch, $ifIndex, $mac, $node_info, $connection_type,

$user_name, $ssid) = @_;

 my $logger = Log::Log4perl->get_logger();

 return $switch->getVlanByName('normalVlan');

}

As you can see, the function receives several parameters (such as the switch and full node details)
which allow you to return the VLAN in a way that matches exactly your needs!

Copyright © Inverse inc. 10. Customizing PacketFence 35

11. SNMP

11.1. Introduction

Good places to start reading about SNMP are http://en.wikipedia.org/wiki/SNMP and
http://www.net-snmp.org/.

When working with SNMP, you’ll sooner or later (in fact more sooner than later) be confronted
with having to translate between OIDs and variable names. When the OIDs are part of the Cisco
MIBs, you can use the following tool to do the translation: http://tools.cisco.com/Support/SNMP/
public.jsp. Otherwise, you’ll have to use snmptranslate for example and setup your own
collection of MIBs, provided (hopefully) by the manufacturer of your network equipment.

11.2. Obtaining switch and port information

Below are some example of how to obtain simple switch and port information using SNMP. We’ll
assume that your switch understands SNMP v2, has the read community public defined and is
reachable at 192.168.1.10.

11.2.1. Switch Type

snmpwalk -v 2c -c public 192.168.1.10 sysDescr

11.2.2. Switchport indexes and descriptions

snmpwalk -v 2c -c public 192.168.1.10 ifDescr

11.2.3. Switchport types

snmpwalk -v 2c -c public 192.168.1.10 ifType

11.2.4. Switchport status

snmpwalk -v 2c -c public 192.168.1.10 ifAdminStatus

snmpwalk -v 2c -c public 192.168.1.10 ifOperStatus

Copyright © Inverse inc. 11. SNMP 36

http://en.wikipedia.org/wiki/SNMP
http://www.net-snmp.org/
http://tools.cisco.com/Support/SNMP/public.jsp
http://tools.cisco.com/Support/SNMP/public.jsp

12. Supporting new network hardware

PacketFence is designed to ease the addition of support for new network hardware referred to as
Network Devices. All supported network devices are represented through Perl objects with an
extensive use of inheritance. Adding support for a new product comes down to extending the
pf::Switch class (in /usr/local/pf/lib/pf).

The starting point to adding support for a new network device should be the vendor’s
documentation! First of all, you’ll have to figure out the exact capabilities of the switch and how
these capabilities will fit into PacketFence. Is it a Switch, an Access-Point or a Wireless Controller?

12.1. Switch

Will you be able to use only link change traps? Does your switch allow you to use MAC
notification traps? Port Security? MAC Authentication? 802.1X?

12.1.1. Link change capabilities

You need to define a new class which inherits from pf::Switch and defines at least the following
functions:

• getMacAddrVlan

• getVersion

• getVlan

• getVlans

• isDefinedVlan

• parseTrap

• _getMacAtIfIndex

• _setVlan

The parseTrap function will need to return an hash with keys trapType and trapIfIndex. The
associated values must be up or down for trapType and the traps' ifIndex for trapIfIndex. See a
similar switch’s implementation for inspiration. Usually recent modules are better coded than
older ones.

12.1.2. MAC notification capabilities

In addition to the functions mentioned for link change, you need to define the following function:

• isLearntTrapsEnabled

Also, your parseTrap function will need to return trapOperation, trapVlan and trapMac keys in
addition to trapType equals mac. See a similar switch’s implementation for inspiration. Usually
recent modules are better coded than older ones.

Copyright © Inverse inc. 12. Supporting new network hardware 37

12.1.3. Port security capabilities

In addition to the functions mentioned for link change, you need to define the following
functions:

• isPortSecurityEnabled

• authorizeMAC

In this case, the parseTrap function needs to return secureMacAddrViolation for the trapType
key. See a similar switch’s implementation for inspiration. Usually recent modules are better
coded than older ones.

12.1.4. MAC Authentication

NOTE Work in progress

NAS-Port translation

Often the ifIndex provided by the switch in a RADIUS Access-Request is not the same as it’s
real world physical equivalent. For example in Cisco requests are in the 50xxx while physical
ifIndex are 10xxx. In order for PacketFence to properly shut the port or request re-authentication
a translation between the two is required. To do so provide an implementation of the following
interface:

• NasPortToIfIndex

MAC Authentication re-evaluation

MAC Authentication re-evaluation is necessary in order to provoke a VLAN change in the
PacketFence system. This happens for instance when a node is isolated based on an IDS event or
when the user successfully authenticates through the captive portal. The default implementation
in pf::Switch will bounce the port if there is no Voice over IP (VoIP) devices connected to the
port. Otherwise it will do nothing and send an email. If your device has specific needs (for
example it doesn’t support RADIUS Dynamic VLAN Assignments) override:

• handleReAssignVlanTrapForWiredMacAuth

Please note that the default implementation works 99% of the time. If you are unsure whether to
override, it means you don’t need to override.

Once the MAC Authentication works, add the Wired MAC Auth capability to the switch’s code
with:

sub supportsWiredMacAuth { return $TRUE; }

12.1.5. 802.1X

NOTE Work in progress

NAS-Port translation

Often the ifIndex provided by the switch in a RADIUS Access-Request is not the same as it’s

Copyright © Inverse inc. 12. Supporting new network hardware 38

real world physical equivalent. For example in Cisco requests are in the 50xxx while physical
ifIndex are 10xxx. In order for PacketFence to properly shut the port or request re-authentication
a translation between the two is required. To do so provide an implementation of the following
interface:

• NasPortToIfIndex

So far the implementation has been the same for MAC Authentication and 802.1X.

Force 802.1X re-authentication

802.1X re-authentication is necessary in order to provoke a VLAN change in the PacketFence
system. This happens for instance when a node is isolated based on an IDS event or when the
user successfully authenticates through the captive portal. The default implementation in
pf::Switch uses SNMP and the standard IEEE8021-PAE-MIB and is generally well supported. If
the default implementation to force 802.1X re-authentication doesn’t work override:

• dot1xPortReauthenticate

Proper 802.1X implementations will perform re-authentication while still allowing traffic to go
through for supplicants under re-evaluation.

Once the 802.1X works, add the Wired Dot1X capability to the switch’s code with:

sub supportsWiredDot1x { return $TRUE; }

12.1.6. RADIUS Dynamic Authorization (RFC3576)

NOTE
RADIUS Dynamic Authorization implementation is not recommended on the
wired side at this point.

RADIUS Dynamic Authorization also known as RADIUS Change of Authorization (CoA) or
RADIUS Disconnect Messages is supported by PacketFence starting with version 3.1.

On wired network devices CoA can be used to change the security posture of a MAC and
perform other functions like bounce a port. So far we only encountered support for CoA on the
wired side on the Cisco hardware. For an implementation example check _radiusBounceMac in
pf::Switch::Cisco.

12.1.7. Floating Network Devices Support

Floating Network Devices are described in the Administration Guide under "Floating Network
Devices" in the "Optional Components" section. Refer to this documentation if you don’t know
what Floating Network Devices are.

In order to support Floating Network Devices on a switch, you need to implement the following
methods:

• setPortSecurityEnableByIfIndex($ifIndex, $enable)

• isTrunkPort($ifIndex)

• setModeTrunk($ifIndex, $enable)

• setTaggedVlans($ifIndex, $switch_locker_ref, @vlans)

Copyright © Inverse inc. 12. Supporting new network hardware 39

• removeAllTaggedVlans($ifIndex, $switch_locker_ref)

You might need to implement the following:

• enablePortConfigAsTrunk($mac, $switch_port, $switch_locker, $taggedVlans)

Provided by pf::Switch core as the glue between setModeTrunk(), setTaggedVlans() and
removeAllTaggedVlans(). Override if necessary.

• disablePortConfigAsTrunk($switch_port)

Provided by pf::Switch core as the glue between setModeTrunk(), setTaggedVlans() and
removeAllTaggedVlans(). Override if necessary.

• enablePortSecurityByIfIndex($ifIndex)

Provided by pf::Switch core as a slim accessor to setPortSecurityEnableByIfIndex().
Override if necessary.

• disablePortSecurityByIfIndex($ifIndex)

Provided by pf::Switch core as a slim accessor to setPortSecurityEnableByIfIndex().
Override if necessary.

• enableIfLinkUpDownTraps($ifIndex)

Provided by pf::Switch core as a slim accessor to setIfLinkUpDownTrapEnable. Override if
necessary.

• disableIfLinkUpDownTraps($ifIndex)

Provided by pf::Switch core as a slim accessor to setIfLinkUpDownTrapEnable. Override if
necessary.

Once all the required methods are implemented, enable the capability in the switch’s code with:

sub supportsFloatingDevice { return $TRUE; }

12.2. Wireless Access-Points or Controllers

12.2.1. Minimum hardware requirements

PacketFence’s minimum requirements regarding Wireless hardware is:

• definition of several SSID with several VLANs inside every SSID (minimum of 2 VLANs per
SSID)

• RADIUS authentication (MAC Authentication / 802.1X)

• Dynamic VLAN assignment through RADIUS attributes

• a means to de-associate or de-authenticate a client through CLI (Telnet or SSH), SNMP,
RADIUS Dyn-Auth [1] or WebServices

Most of these features are available on enterprise grade Access Points (AP) or Controllers. Where

Copyright © Inverse inc. 12. Supporting new network hardware 40

the situation starts to vary wildly is for deauthentication support.

12.2.2. De-authentication techniques

CLI (SSH or Telnet)

An error prone interface and requires preparation for the SSH access or is insecure for Telnet. Not
recommended if you can avoid it.

SNMP

SNMP de-authentication works well when available. However Vendor support is not consistent
and the OID to use are not standard.

RADIUS Dynamic Authorization (RFC3576)

RADIUS Dynamic Authorization also known as RADIUS Change of Authorization (CoA) or
RADIUS Disconnect Messages is supported by PacketFence starting with version 3.1. When
supported it is the preferred technique to perform de-authentication. It is standard and requires
less configuration from the user.

An actual implementation can be found in pf::Switch::Aruba.

12.2.3. Template module

Start with a copy of the template module pf/lib/pf/Switch/WirelessModuleTemplate.pm and
fill in appropriate documentation and code.

12.2.4. Required methods

You need to implement at least:

getVersion()

Fetches firmware version

parseTrap()

Parses the SNMP Traps sent by the hardware. For wireless hardware an empty method like the
one in pf::Switch::WirelessModuleTemplate is ok.

deauthenticateMac()

Performs deauthentication

supportsWirelessMacAuth()

Return $TRUE if MAC-Authentication is supported

supportsWirelessDot1x()

Return $TRUE if 802.1X (aka WPA-Enterprise) is supported

12.2.5. Override methods

If default implementation of the following methods doesn’t work you will need to override them:

Copyright © Inverse inc. 12. Supporting new network hardware 41

extractSsid()

Extract SSID from RADIUS Request

12.2.6. Special case: bridged versus tunneled modes and deauthentication

It is important to validate the Access-Point (AP) to Controller relationship when operating in
bridged mode versus when operating in tunneled mode. For example, some hardware will send
the RADIUS Access-Request from the AP when in bridged mode even though it is controlled by
a controller. This behavior impacts deauthentication because it still needs to be performed on the
controller. To support this behavior a switches.conf parameter was introduced: controller_ip.

When adding a new Wireless module try to validate the bridged versus tunneled behavior and
modify deauthenticateMac() to honor controller_ip if required.

12.3. The "adding a new network device module in
PacketFence" checklist

Here’s a quick rundown of the several files you need to edit in order to add a new switch into
PacketFence. There’s a plan to reduce this amount of work in progress see issue #1085.

• Tested model and firmware version should be documented in module’s POD

• Any bugs and limitations should be documented in module’s POD

• Make sure that all tests pass

• Add configuration documentation to the Network Devices Guide

• Add switch to the Network Devices Guide’s switch chart

• Add switch to the chart in README.network-devices

[1] RADIUS Dynamic Authorization (RFC 3576) aka Change of Authorization (CoA) or Disconnect-Messages (DM aka PoD)

Copyright © Inverse inc. 12. Supporting new network hardware 42

http://packetfence.org/bugs/view.php?id=1085

13. PacketFence builds

13.1. Packer

To build PacketFence, we use Packer to create container images that are then used in a GitLab
pipeline.

13.2. Anatomy of Packer template

PacketFence rely on gitlab-buildpkg images to run GitLab pipeline with gitlab-buildpkg-tools.
Packer template (pfbuild.json) use these images as base to build inverse-inc container images.

13.2.1. Custom build dependencies

To start building PacketFence, we need to install specific things in images like:

• custom repositories and GPG keys to install RPM or DEB packages at build time

• install and configure upstream softwares necessary to build PacketFence if we can’t use
packages

We use Ansible and shell scripts to cover these steps. It’s possible because Python is already
installed in gitlab-buildpkg images.

13.2.2. Build dependencies in packages specs

Build dependencies need to be install in container images before starting build process. We rely
on gitlab-buildpkg-tools to automatically install those dependencies based on packages
specifications file. Consequently, all build requires need to be define in packages specifications
file.

13.2.3. Golang environment

We use Packer to set up a Golang environment in order to build Golang binaries in container
images.

We also set environment variables in container images, using ENV directives, to simplify usage of
go commands.

13.2.4. Clean up

To make container images lightweight, we make a clean up at end of the process.

13.3. How to build container images ?

Container images are built inside a GitLab pipeline.

Copyright © Inverse inc. 13. PacketFence builds 43

http://packer.io
https://github.com/orgs/inverse-inc/packages
https://gitlab.com/Orange-OpenSource/gitlab-buildpkg/
https://gitlab.com/Orange-OpenSource/gitlab-buildpkg-tools
https://gitlab.com/Orange-OpenSource/gitlab-buildpkg/

13.3.1. Prerequisites

Install following softwares:

• Packer (>=1.6.5)

• Docker

• Ansible (>=2.10)

13.3.2. Makefile

Because we run build inside a GitLab pipeline, many environment variables can be set to change
build behavior. A Makefile and a wrapper are provided to simplify creation of a new container
images based on environment variables.

Example usage of Makefile

 DOCKER_TAGS=feature-pfconfig-container \

REGISTRY_USER=InverseBot REGISTRY_PASSWORD=REDACTED \

REGISTRY=ghcr.io REGISTRY_URL=${REGISTRY}/inverse-inc/packetfence \

make -e -C ci/packer build_img_docker_pfbuild

13.4. Troubleshooting

You can troubleshoot issues in Packer builds by setting environment variable $PACKER_LOG
environment variable to 1.

Copyright © Inverse inc. 13. PacketFence builds 44

http://packer.io/intro/getting-started/install.html
https://docs.docker.com/install/

14. Developer recipes

14.1. Virtual environment

To test PacketFence on several distributions, we used Vagrant virtual machines. You can set up a
similar environment to develop.

14.1.1. Virtual environment: prerequisites

Install following softwares:

• Vagrant (>= 2.2.10) provided by Hashicorp

• libvirt, KVM/QEMU and vagrant-libvirt if you want to use libvirt as a provider for Vagrant

• pywinrm > 0.3.0 if you want to use ad virtual machine

• Ansible = 2.10.X

14.1.2. Virtual environment: initial setup

Install Ansible and Ansible code

RHEL-based systems

yum install -y python3-pip

Debian-based systems

apt update

apt install -y python3-pip

Then install Ansible through pip:

pip3 install --user 'ansible<3'

After installing Ansible through pip, you need to add $HOME/.local/bin/ to your PATH.

Using ansible-galaxy command, you can then pull PacketFence’s collection and Ansible roles:

cd packetfence/addons/vagrant

ansible-galaxy install -r requirements.yml

Copyright © Inverse inc. 14. Developer recipes 45

https://www.vagrantup.com/docs/installation/

14.2. Running development version

14.2.1. Bleeding edge

For day to day development one can run a checkout of the current development branch in
/usr/local/pf/ and develop there within a working setup.

14.2.2. Not so bleeding edge

If you prefer to use packages, you can install latest PacketFence packages from nightly builds.

Initial setup

Install prequisites and follow initial setup then start pf*dev machines.

These machines will be auto-configured to install nightly builds from development repositories.

Packages from PPA

If you want to install latest packages built in the pipeline, available on GitLab, you can use
following commands:

CI_PROJECT_NAME="ppa" CI_PAGES_URL="http://inverse-inc.gitlab.io/packetfence"

vagrant up VM_NAME

WARNING Packages available here could be build on other branches than devel.

Day to day usage

To keep your machine up-to-date, you can run the following commands:

vagrant provision --provision-with=install VM_NAME

Make sure you read the Upgrade Guide after every upgrades to avoid any surprises.

Running an Ansible playbook against Vagrant virtual machines

If you want to use Ansible directly against Vagrant virtual machines (already started), you can use
following commands:

ansible-playbook site.yml --limit VM_NAME

It’s possible because we use a static Ansible inventory. This inventory is also used by Vagrant to
start virtual machines.

Specific version of a package

If you want to install a specific version of a package, you can create a YAML file that override
default inventory, for example:

Copyright © Inverse inc. 14. Developer recipes 46

https://inverse-inc.gitlab.io/packetfence/
PacketFence_Upgrade_Guide.pdf

cat >> extra.yml << EOF

packetfence_install__centos_packages:

 - packetfence-9.2.0-20191126180126.98740132.0007.el7

EOF

ansible-playbook site.yml --limit VM_NAME -e @extra.yml

Copyright © Inverse inc. 14. Developer recipes 47

15. Containers recipes

15.1. Glossary

• A server running the packages: A PacketFence server installed using the RPM or DEB
packages and not converted to a dev machine (i.e. what PacketFence users deploy)

15.2. Applying a custom patch on a server running the
packages

When applying a custom patch or adding debug in the code on a PacketFence 12.0+ server,
additional steps must be taking for your change to be effective in the service(s) running in
container mode.

To know if a service runs in container mode, run systemctl status on the service (ex: systemctl
status packetfence-pfpki) and check if one of the child processes contains docker run.

After you’ve altered the code on the server and you’re satisfied with the changes, run the
following command:

(pfpki is being used in this example, replace with the appropriate container

name)

/usr/local/pf/addons/dev-helpers/build-local-container.sh pfpki

Make sure the build succeeds and then restart the service using systemctl restart [service-
name] to make your change active.

WARNING
If you apply the maintenance or upgrade PacketFence, your changes to this
container will be lost

15.3. Altering the code in a container on a server running the
packages

If you alter the code in a running container, your change will be lost the next time the container
restarts. In order to make your change permanent, run:

(pfpki is being used in this example, replace with the appropriate container

name)

/usr/local/pf/addons/dev-helpers/commit-local-container.sh pfpki

WARNING
If you apply the maintenance or upgrade PacketFence, your changes to this
container will be lost

Copyright © Inverse inc. 15. Containers recipes 48

16. Running tests

16.1. Unit tests

16.1.1. Unit tests: prerequisites

Prerequisites to run unit tests:

• MariaDB up and running

• PacketFence package(s) installed with all dependencies in /usr/local/pf directory

• Fingerbank API key configured

• Environment variables defined:

◦ PF_TEST_MGMT_INT

◦ PF_TEST_MGMT_IP

◦ PF_TEST_MGMT_MASK

• Golang environment

You can meet these prerequisites by starting a pf*dev Vagrant virtual machine using instructions
in Virtual environment: initial setup section.

Inside pf*dev virtual machines, t directory will be available under /usr/local/pf/t.

16.1.2. Running all unit tests

After a vagrant up command, unit tests should have been run. If you want to run them again,
execute following command:

vagrant provision --provision-with=run-unit-tests VM_NAME

This will upload run-tests.sh script on virtual machine to run it.

IMPORTANT
Don’t forget to run a vagrant rsync VM_NAME before running unit tests
again if you modify t directory on your host. This will upload latest
changes made to /src/t directory in VM_NAME.

16.1.3. Running Perl unit tests

If you want to run only Perl unit tests, disable Golang unit tests using GOLANG_UNIT_TESTS
environment variable:

GOLANG_UNIT_TESTS=no vagrant provision --provision-with=run-unit-tests VM_NAME

Copyright © Inverse inc. 16. Running tests 49

16.1.4. Running Golang unit tests

If you want to run only Golang unit tests, disable Perl unit tests using PERL_UNIT_TESTS
environment variable:

PERL_UNIT_TESTS=no vagrant provision --provision-with=run-unit-tests VM_NAME

You can get more details on Golang unit tests in Golang section.

16.1.5. Wrapper

In ci/lib/test, you will find a Makefile used as a wrapper to start, test and destroy virtual
machines. Examples:

Usage of Makefile

make -C ci/lib/test test-pfcen7dev-dev

make -e -C ci/lib/test test-pfcen7dev-dev

make PF_VM_NAME=pfdeb9dev PERL_UNIT_TESTS=no -C ci/lib/test test

make PF_VM_NAME=pfdeb9dev clean

16.2. Integration tests

The aim of integration tests is to test common PacketFence scenarios and integrations in a
pipeline.

Integration tests rely on:

• Virtual environment

• network topologies built using libvirt [1]

• virtual machines different than PacketFence to test integrations

16.2.1. Network subnets and IP addresses

Table 2. Subnet table

Network name Subnet VLAN ID

Management 172.17.17.0/24 17

Registration 172.17.2.0/24 2

Isolation 172.17.3.0/24 3

Inline L2 172.17.6.0/24 6

Inline L3 172.17.18.0/24 18

Internet 192.168.121.0/24 100

Management network is used to provision each virtual machine using Ansible to put them in a

Copyright © Inverse inc. 16. Running tests 50

desired state.

Table 3. IP addresses assigned to virtual machines

Virtual machine Network name IP address

pfel8dev Management 172.17.17.10

pfel8stable Management 172.17.17.14

pfdeb12dev Management 172.17.17.12

pfdeb12stable Management 172.17.17.16

ad Management 172.17.17.100

linux01 Management 172.17.17.101

linux02 Management 172.17.17.102

switch01 Management 172.17.17.201

wireless01 Management 172.17.17.210

node01 Management 172.17.17.251

node02 Management 172.17.17.252

pf*dev or pf*stable Registration 172.17.2.2

pf*dev or pf*stable Isolation 172.17.3.2

pf*dev or pf*stable Inline L2 172.17.6.2

switch01 Inline L2 172.17.6.3

switch01 Inline L3 172.17.18.254

NOTE First IP address (.1) in each subnet is reserved for libvirt hypervisor.

16.2.2. Wired network topology

Copyright © Inverse inc. 16. Running tests 51

Figure 2. Wired network topology

Initial Provisioning

switch01, node01 and node02 are provisioned using Vagrant like this:

• a first boot with basic shell provisioning to configure interfaces remap and networks

• a second boot that handles interface remap

• an Ansible provisioning

Provisioning is deliberately minimalist to make the most during integration tests.

Inventory Information

Table 4. IPAM table

Virtual machine Interfaces MAC address

switch01 swp48, bridge, bridge.6,
bridge.17, bridge.18,
bridge.100

Same MAC, automatically
generated

switch01 swp1 a0:00:00:00:00:01

switch01 swp2 44:38:39:00:00:02

switch01 swp3 44:38:39:00:00:03

switch01 swp6 44:38:39:00:00:06

switch01 swp11 44:38:39:00:00:11

switch01 swp12 44:38:39:00:00:12

Copyright © Inverse inc. 16. Running tests 52

Virtual machine Interfaces MAC address

switch01 swp13 44:38:39:00:00:13

switch01 swp14 44:38:39:00:00:14

switch01 swp15 44:38:39:00:00:15

node01 eth0 a0:00:00:00:00:12

node01 eth1 00:03:00:11:11:01

node01 eth2 00:03:00:11:11:02

node02 eth0 a0:00:00:00:00:22

node02 eth1 00:03:00:11:12:01

16.2.3. Wireless network topology

Figure 3. Wireless network topology

Inventory Information

Table 5. IPAM table

Virtual machine Interfaces MAC address

wireless01 wlan0 (hostapd managed
interface)

02:00:00:00:00:00

wireless01 wlan0.XXX (with XXX VLAN
returned by PacketFence in
RADIUS reply)

02:00:00:00:00:00

wireless01 wlan1 (wpa_supplicant
interface)

02:00:00:00:01:00

On wireless01:

Copyright © Inverse inc. 16. Running tests 53

• wlan0 is the interface which represents an access point (NAS for PacketFence)

• wlan1 is the interface which represents a supplicant (node for PacketFence)

16.2.4. Virtual machines

Active Directory Server

Virtual machine called ad will be auto-provisioned with:

• a DNS domain

• an Active Directory domain

• Active Directory Certificate Services (AD CS) with auto-enrollment using a GPO

• a administrator account, member of Domain admins group, with VagrantPass1 as password

• a packetfence account, member of Domain users group, with P@ck3tF3nc3pass as password

Several reboots are necessary before machine can be provisioned by Ansible. During initial
Ansible provisioning, several reboots will occur too. It takes like few minutes to have a machine
up and running.

You can find credentials of AD accounts (domain administrator and PacketFence user) in following
files: * $PF_ROOT/addons/vagrant/inventory/group_vars/linux_servers/samba4ad.yml

Switch01

switch01 is a virtual switch that uses Cumulus Linux 3.7 system.

This switch is configured using a VLAN aware-bridge to manage VLAN on interfaces
(recommended approach)

hostapd is the daemon responsible to send 802.1X and MAC Authentication requests to RADIUS
server (as described in 802.1X Cumulus Linux documentation). We configured this daemon using
Ansible with RADIUS server informations. However, daemon will be started during integration
tests when switch interfaces are involved.

Node01 and Node02

node01 is a Debian Buster virtual machine used as node to test wired PacketFence features like
802.1X, MAC authentification, registration, isolation and inline scenarios.

node02 is identical to node01 but is only used to test inline L3 features of PacketFence.

These machines have an Internet access only during its first boot to emulate a node connected to
a switch controlled by PacketFence. After the reboot, machines are only reachable using
management network: vagrant ssh node01 will not work.

All interfaces of node01 and node02 are up after initial provisionning. We rely on switch01
configuration to trigger specific scenario.

Because node01 and node02 have no IP on management network during first boot, Ansible
provisioning through Vagrant is specific and made in two steps:

• pre-provisioning using dynamic inventory generated by Vagrant and a specific playbook

Copyright © Inverse inc. 16. Running tests 54

https://docs.cumulusnetworks.com/version/cumulus-linux-37/
https://docs.cumulusnetworks.com/cumulus-linux-37/Layer-2/Ethernet-Bridging-VLANs/
https://docs.cumulusnetworks.com/version/cumulus-linux-37/Layer-1-and-Switch-Ports/802.1X-Interfaces/

• post-provisioning identical to other Vagrant VMs (but without any Internet access)

Pre-provisioning playbooks should be used to install everything that require an Internet access.

Pre-provisioning step will not use variables defined in common Ansible inventory: variables need
to be defined directly in playbooks that run during this step. Variables defined in common Ansible
inventory and in playbooks need to be consistent to avoid an override during post-provisioning.

Wireless01

wireless01 is a Debian Buster virtual machine used as a virtual switch and node. It is used to test
Wireless PacketFence features like 802.1X, MAC authentification.

hostapd is the daemon responsible to send 802.1X and MAC Authentication requests to RADIUS
server. It is using the kernel module mac80211_hwsim, a software simulator of 802.11 radio(s) for
mac80211 (as described in Linux Wireless mac80211_hwsim). We configured this daemon using
Ansible with RADIUS server informations.

Two deamons are available. One for an Open SSID and the other for a Secure SSID. Both are set
to not run at the same time.

wpa_supplicant utility is an implementation of the WPA Supplicant component with support for
WPA and WPA2 (IEEE 802.11i / RSN). Supplicant is the IEEE 802.1X/WPA Supplicant for
wireless network devices. It implements key negotiation with a WPA Authenticator which controls
the roaming and IEEE 802.11 authentication/association of the wlan driver.

Linux servers

Linux servers are used to:

• provide infrastructure services to PacketFence server(s)

• host services to test integration with PacketFence

They are provisioned using Ansible.

[1] based on Cumulus Networks’s project cldemo

Copyright © Inverse inc. 16. Running tests 55

https://wireless.wiki.kernel.org/en/users/drivers/mac80211_hwsim
https://github.com/CumulusNetworks/cldemo-vagrant

17. Contributing

Here are some golden rules of contributing to PacketFence:

• Be active on the developer mailing list

The place to be if you want to contribute to the PacketFence project is our developers mailing
list: https://lists.sourceforge.net/lists/listinfo/packetfence-devel. Let us know your issues, what
you are working on and how you want to solve your problems. The more you collaborate the
greater the chances that your work will be incorporated in a timely fashion.

• Use the issue tracker: https://packetfence.org/bugs/

Good chances that the bug you want to fix or the feature you want to implement is already filed
and that information in the ticket will help you.

• Please provide small, focused and manageable patches or pull-requests

If you plan on doing a lot of code, use git and track our current stable branch called stable.
Develop the feature in small chunks and stay in touch with us. This way it’ll be merged quickly in
our code base. Ideally there would be no big code dumps after finishing a feature.

17.1. Creating patches

NOTE
Since we migrated to git / github, using these tools is recommended over sending
patches by hand.

Patches should be sent in unified diff format. This can be obtained from the diff or git tools.

diff -u oldfile newfile

or from a checkout of the PacketFence source code from git:

git diff

17.2. Translations

The internationalization process uses gettext. If you are new to gettext, please consult
http://www.gnu.org/software/gettext/manual/gettext.html#Overview for a quick introduction.

The PO files are stored in /usr/local/pf/conf/locale. List that directory to see the languages
we currently have translations for.

Copyright © Inverse inc. 17. Contributing 56

https://lists.sourceforge.net/lists/listinfo/packetfence-devel
https://lists.sourceforge.net/lists/listinfo/packetfence-devel
https://packetfence.org/bugs/
http://www.gnu.org/software/gettext/manual/gettext.html#Overview

17.2.1. Online using Transifex

We use the hosted service Transifex to translate PacketFence’s PO files. It offers the possibility to
translate all the strings online as well as providing a command-line tool to push your changes. It’s
very convenient.

To use Transifex, you must first sign up for a free account here: https://www.transifex.net/plans/
signup/free/

• Once registered, request a new team for your language

• Once authorized, you’ll be able to start/continue translating PacketFence in your language

If you need further help about using Transifex, you might want to have a look here.

17.2.2. Using traditional method

If you want to add support for a new language, please follow these steps:

1. create a new language subdirectory in /usr/local/pf/conf/locale

2. change into your newly created directory

3. create a new subdirectory LC_MESSAGES

4. change into your newly created directory

5. copy the file /usr/local/pf/conf/locale/en/LC_MESSAGES/packetfence.po into your
directory

6. translate the message strings in packetfence.po

7. create the MO file by executing:

/usr/bin/msgfmt packetfence.po

Submit your new translation to the PacketFence project by contacting us at packetfence-
devel@lists.sourceforge.net.

Copyright © Inverse inc. 17. Contributing 57

https://www.transifex.net/plans/signup/free/
https://www.transifex.net/plans/signup/free/
https://www.transifex.net/projects/p/packetfence/teams
http://help.transifex.com/
mailto:packetfence-devel@lists.sourceforge.net
mailto:packetfence-devel@lists.sourceforge.net

18. Additional Information

For more information, please consult the mailing archives or post your questions to it. For details,
see:

• packetfence-announce@lists.sourceforge.net: Public announcements (new releases, security
warnings etc.) regarding PacketFence

• packetfence-devel@lists.sourceforge.net: Discussion of PacketFence development

• packetfence-users@lists.sourceforge.net: User and usage discussions

Copyright © Inverse inc. 18. Additional Information 58

mailto:packetfence-announce@lists.sourceforge.net
mailto:packetfence-devel@lists.sourceforge.net
mailto:packetfence-users@lists.sourceforge.net

19. Commercial Support and Contact Information

For any questions or comments, do not hesitate to contact us by writing an email to:
support@inverse.ca.

Inverse (https://inverse.ca) offers professional services around PacketFence to help organizations
deploy the solution, customize, migrate versions or from another system, performance tuning or
aligning with best practices.

Hourly rates or support packages are offered to best suit your needs.

Please visit https://inverse.ca/ for details.

Copyright © Inverse inc. 19. Commercial Support and Contact Information 59

mailto:support@inverse.ca
https://inverse.ca
https://inverse.ca/

20. GNU Free Documentation License

Please refer to http://www.gnu.org/licenses/fdl-1.2.txt for the full license.

Copyright © Inverse inc. 20. GNU Free Documentation License 60

http://www.gnu.org/licenses/fdl-1.2.txt

	Developer’s Guide
	Table of Contents
	1. About this Guide
	1.1. Other sources of information

	2. Creating a new Switch via a Template
	2.1. Using web admin
	2.2. Using CLI
	2.3. Required Parameters
	2.4. RADIUS scope Parameters
	2.5. Additional parameters
	2.6. Comments
	2.7. Defining RADIUS Attributes
	2.8. Dynamic RADIUS Attribute Value Syntax

	3. Documentation
	4. Asciidoctor documentation
	4.1. Documentation Conventions
	4.2. Checklist to create a new guide

	5. Development environment setup
	6. Administration GUI development setup
	7. Golang environment
	7.1. PacketFence Golang libraries

	8. Code conventions
	8.1. Code style

	9. HTTP JSON API
	9.1. How to use the API

	10. Customizing PacketFence
	10.1. Captive Portal
	10.2. Adding custom fields to the database
	10.3. VLAN assignment

	11. SNMP
	11.1. Introduction
	11.2. Obtaining switch and port information

	12. Supporting new network hardware
	12.1. Switch
	12.2. Wireless Access-Points or Controllers
	12.3. The "adding a new network device module in PacketFence" checklist

	13. PacketFence builds
	13.1. Packer
	13.2. Anatomy of Packer template
	13.3. How to build container images ?
	13.4. Troubleshooting

	14. Developer recipes
	14.1. Virtual environment
	14.2. Running development version

	15. Containers recipes
	15.1. Glossary
	15.2. Applying a custom patch on a server running the packages
	15.3. Altering the code in a container on a server running the packages

	16. Running tests
	16.1. Unit tests
	16.2. Integration tests

	17. Contributing
	17.1. Creating patches
	17.2. Translations

	18. Additional Information
	19. Commercial Support and Contact Information
	20. GNU Free Documentation License

